Cantors proof

Hmm it's not really well defined (edit: to clarify, as a function it is well defined but this is not enough for the standard proof to be complete; edit2 and to clarify futher by the 'standard proof' I mean the popularized interpretation of cantors argument to show specifically that there are more real numbers than natural numbers which is not ...

Cantors proof. 3. Cantor's second diagonalization method The first uncountability proof was later on [3] replaced by a proof which has become famous as Cantor's second diagonalization method (SDM). Try to set up a bijection between all natural numbers n œ Ù and all real numbers r œ [0,1). For instance, put all the real numbers at random in a list with ...

1 Answer. The smallest x x such that a1 = 2 a 1 = 2 is 2/3 2 / 3. The largest x x such that a1 = 0 a 1 = 0 is 1/3 1 / 3. Therefore two numbers with different a1 a 1 s are at least 1/3 1 / 3 apart. Likewise, two numbers with different an a n s are at least 1/3n 1 / 3 n apart.

Cantor’s lifelong dream seems to have been to return to Berlin as a professor, but it never happened. He rose through the ranks in Halle, becoming a full professor in 1879 and staying there until his death. See [13] for a short account of Cantor’s life. The standard account of Cantor’s mathematical work is [4].Cantor's method of diagonal argument applies as follows. As Turing showed in §6 of his (), there is a universal Turing machine UT 1.It corresponds to a partial function f(i, j) of two variables, yielding the output for t i on input j, thereby simulating the input-output behavior of every t i on the list. Now we construct D, the Diagonal Machine, with corresponding one-variable function ...Cantor's Proof of the Existence of Transcendental Numbers. Appendix D. Trigonometric Numbers. Answers and Suggestions to Selected Problems. Index. Get access. Share. Cite. Summary. A summary is not available for this content so a preview has been provided.Your method of proof will work. Taking your idea, I think we can streamline it, in the following way: Let ϵ > 0 ϵ > 0 be given and let (ϵk) ( ϵ k) be the binary sequence representing ϵ. ϵ. Take the ternary sequence for the δ δ (that we will show to work) to be δk = 2ϵk δ k = 2 ϵ k.4. Diagonalization comes up a lot in theoretical computer science (eg, proofs for both time hierarchy theorems). While Cantor's proof may be slightly off-topic, diagonalization certainly isn't. - Nicholas Mancuso. Nov 19, 2012 at 14:01. 5. @AndrejBauer: I disagree. Diagonalization is a key concept in complexity theory. - A.Schulz.

For those who are looking for an explanation for the answer given by Asaf Karagila: Given a set of any non-zero size, it is possible to create a larger set by taking the set of subsets of the original.In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero derivative almost everywhere, its value still goes from ...PDF | Cantor's theorem states that the power set of ℕ is uncountable. This article carefully analyzes this proof to clarify its logical reasoning. | Find, read and cite all the research you need ...Applying Cantor's diagonal argument. I understand how Cantor's diagonal argument can be used to prove that the real numbers are uncountable. But I should be able to use this same argument to prove two additional claims: (1) that there is no bijection X → P(X) X → P ( X) and (2) that there are arbitrarily large cardinal numbers.Cantor's argument is a direct proof of the contrapositive: given any function from $\mathbb{N}$ to the set of infinite bit strings, there is at least one string not in the range; that is, no such function is surjective. See, e.g., here. $\endgroup$ - Arturo Magidin.This is the starting point for Cantor’s theory of transfinite numbers. The cardinality of a countable set (denoted by the Hebrew letter ℵ 0) is at the bottom. Then we have the cardinallity of R denoted by 2ℵ 0, because there is a one to one correspondence R → P(N). Taking the powerset again leads to a new transfinite number 22ℵ0.In today’s fast-paced world, technology is constantly evolving, and our homes are no exception. When it comes to kitchen appliances, staying up-to-date with the latest advancements is essential. One such appliance that plays a crucial role ...20 thg 7, 2016 ... Cantor's Diagonal Proof, thus, is an attempt to show that the real numbers cannot be put into one-to-one correspondence with the natural numbers ...

Cantor’s lifelong dream seems to have been to return to Berlin as a professor, but it never happened. He rose through the ranks in Halle, becoming a full professor in 1879 and staying there until his death. See [13] for a short account of Cantor’s life. The standard account of Cantor’s mathematical work is [4].Cantor's denationalization proof is bogus. It should be removed from all math text books and tossed out as being totally logically flawed. It's a false proof. Cantor was totally ignorant of how numerical representations of numbers work. He cannot assume that a completed numerical list can be square. Yet his diagonalization proof totally …1896 Schröder announces a proof (as a corollary of a theorem by Jevons). 1897 Bernstein, a 19-year-old student in Cantor's Seminar, presents his proof. 1897 Almost simultaneously, but independently, Schröder finds a proof. 1897 After a visit by Bernstein, Dedekind independently proves the theorem a second time.An elegant proof using Coulomb's Law, infinite series, and…. Read more…. Read all stories published by Cantor's Paradise on October 06, 2023. Medium's #1 Math Publication.Georg Ferdinand Ludwig Philipp Cantor (/ ˈ k æ n t ɔːr / KAN-tor, German: [ˈɡeːɔʁk ˈfɛʁdinant ˈluːtvɪç ˈfiːlɪp ˈkantɔʁ]; 3 March [O.S. 19 February] 1845 - 6 January 1918) was a mathematician.He played a pivotal role in the creation of set theory, which has become a fundamental theory in mathematics. Cantor established the importance of one-to-one correspondence between ...Cantor's denationalization proof is bogus. It should be removed from all math text books and tossed out as being totally logically flawed. It's a false proof. Cantor was totally ignorant of how numerical representations of numbers work. He cannot assume that a completed numerical list can be square. Yet his diagonalization proof totally …

Ku patient information.

The Riemann functional equation. let's call the left-hand side Λ (s). It doesn't matter what it means yet but one thing is clear, the equation then says that Λ (s) = Λ (1-s). That is, by replacing s with 1-s, we "get back to where we started". This is a reflectional symmetry.22-Mar-2013 ... The proof of the second result is based on the celebrated diagonalization argument. Cantor showed that for every given infinite sequence of real ...TitleAbstractPreliminariesConstruction and FormulaProperties and Proofs Abstract The Cantor set is a famous set first introduced by German mathematician Georg Cantor ... Cantor's proof. I'm definitely not an expert in this area so I'm open to any suggestions.In summary, Cantor "proved" that if there was a list that purported to include all irrational numbers, then he could find an irrational number that was not on the list. However, this "proof" results in a contradiction if the list is actually complete, as is ...A simple corollary of the theorem is that the Cantor set is nonempty, since it is defined as the intersection of a decreasing nested sequence of sets, each of which is defined as the union of a finite number of closed intervals; hence each of these sets is non-empty, closed, and bounded. In fact, the Cantor set contains uncountably many points.

A set is countable if you can count its elements. Of course if the set is finite, you can easily count its elements. If the set is infinite, being countable means that you are able to put the elements of the set in order just like natural numbers are in order. Yet in other words, it means you are able to put the elements of the set into a ...In this guide, I'd like to talk about a formal proof of Cantor's theorem, the diagonalization argument we saw in our very first lecture. Here's the statement of Cantor's theorem that we saw in our first lecture. It says that every set is strictly smaller than its power set. If Sis a set, then |S| < | (℘S)| Cantor's argument of course relies on a rigorous definition of "real number," and indeed a choice of ambient system of axioms. But this is true for every theorem - do you extend the same kind of skepticism to, say, the extreme value theorem? Note that the proof of the EVT is much, much harder than Cantor's arguments, and in fact isn't ...The Power Set Proof. The Power Set proof is a proof that is similar to the Diagonal proof, and can be considered to be essentially another version of Georg Cantor's proof of 1891, [ 1] and it is usually presented with the same secondary argument that is commonly applied to the Diagonal proof. The Power Set proof involves the notion of subsets.15-Jul-2021 ... But to Cantor's immense distress, he couldn't prove it. In 1900, the mathematician David Hilbert put the continuum hypothesis first on his ...A proof that the Cantor set is Perfect. I found in a book a proof that the Cantor Set Δ Δ is perfect, however I would like to know if "my proof" does the job in the same way. Theorem: The Cantor Set Δ Δ is perfect. Proof: Let x ∈ Δ x ∈ Δ and fix ϵ > 0 ϵ > 0. Then, we can take a n0 = n n 0 = n sufficiently large to have ϵ > 1/3n0 ϵ ...I'm trying to grasp Cantor's diagonal argument to understand the proof that the power set of the natural numbers is uncountable. On Wikipedia, there is the following illustration: The explanation of the proof says the following: By construction, s differs from each sn, since their nth digits differ (highlighted in the example).The graph of the Cantor function on the unit interval. In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous.It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero derivative …Sign up to brilliant.org to receive a 20% discount with this link! https://brilliant.org/upandatom/Cantor sets and the nature of infinity in set theory. Hi!...exist. This diagonalization proof is easily adapted to showing that the reals are non-denumerable, which is the proof commonly presented today [4,2]. We present a formalization of Cantor’s two proofs of the non-denumerability of the reals in ACL2(r). In addition, we present a formalization of Cantor’sPeople everywhere are preparing for the end of the world — just in case. Perhaps you’ve even thought about what you might do if an apocalypse were to come. Many people believe that the best way to survive is to get as far away from major ci...First - I prove that the sequence is bounded. Since the sequence is bounded, the set of its members (and the set of any sub sequence of an a n) has a Supremum and an Infimum. Then, for any natural number k k, I define the closed interval Ak A k, such that An = [inf(ak), sup(ak)] A n = [ inf ( a k), sup ( a k)], where inf and sup of k k are the ...

Add a Comment. I'm not sure if the following is a proof that cantor is wrong about there being more than one type of infinity. This is a mostly geometric argument and it goes like this. 1)First convert all numbers into binary strings. 2)Draw a square and a line down the middle 3) Starting at the middle line do...

1 Cantor’s Pre-Grundlagen Achievements in Set Theory Cantor’s earlier work in set theory contained 1. A proof that the set of real numbers is not denumerable, i.e. is not in one-to-one correspondance with or, as we shall say, is not equipollent to the set of natural numbers. [1874] 2. A definition of what it means for two sets M and N to ...PDF | Cantor's theorem states that the power set of ℕ is uncountable. This article carefully analyzes this proof to clarify its logical reasoning. | Find, read and cite all the research you need ...Cantor's theorem implies that there are infinitely many infinite cardinal numbers, and that there is no largest cardinal number. It also has the following interesting consequence: …3. Cantor's second diagonalization method The first uncountability proof was later on [3] replaced by a proof which has become famous as Cantor's second diagonalization method (SDM). Try to set up a bijection between all natural numbers n œ Ù and all real numbers r œ [0,1). For instance, put all the real numbers at random in a list with ...The negation of Bew(y) then formalizes the notion "y is not provable"; and that notion, Gödel realized, could be exploited by resort to a diagonal argument reminiscent of Cantor's." - Excerpt, Logical Dilemmas by John W. Dawson (2006) Complicated as Gödel's proof by contradiction certainly is, it essentially consists of three parts.The Cantor function Gwas defined in Cantor's paper [10] dated November 1883, the first known appearance of this function. In [10], Georg Cantor was working on extensions of ... Proof. It follows directly from (1.2) that G is an increasing function, and moreover (1.2)modification of Cantor's original proof is found in al-most all text books on Set Theory. It is as follows. Define a function f : A-t 2A by f (x) = {x}. Clearly, f is one-one. Hence card A s: card 2A.

Sayers bears.

Covers.ncaab.

In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers.Cantor's theorem implies that no two of the sets. $$2^A,2^ {2^A},2^ {2^ {2^A}},\dots,$$. are equipotent. In this way one obtains infinitely many distinct cardinal numbers (cf. Cardinal number ). Cantor's theorem also implies that the set of all sets does not exist. This means that one must not include among the axioms of set theory the ...First, Cantor’s celebrated theorem (1891) demonstrates that there is no surjection from any set X onto the family of its subsets, the power set P(X). The proof is straight forward. Take I = X, and consider the two families {x x : x ∈ X} and {Y x …2.3M subscribers in the math community. This subreddit is for discussion of mathematics. All posts and comments should be directly related to…In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Though it is continuous everywhere and has zero derivative almost everywhere, its value still goes from ...In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set, the set of all subsets of , the power set of , has a strictly greater cardinality than itself. For finite sets , Cantor's theorem can be seen to be true by simple enumeration of the number of subsets. Cantor’s diagonal argument was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets that cannot be put into one-to-one correspondence with the infinite set of natural numbers. Such sets are known as uncountable sets and the size of infinite sets is now treated by the theory of cardinal …To kick off the proof we'll fix a positive integer n ≥ 1 and define the function f by the following: where a and b are the numbers from above - that is π = a/b. This function has some interesting properties that we will now explore. The first observation is that f (x) = f (π - x).In my understanding of Cantor's diagonal argument, we start by representing each of a set of real numbers as an infinite bit string. My question is: why can't we begin by representing each natural ... That's the basics for why the proof doesn't work. $\endgroup$ - Michael Chen. Apr 26, 2011 at 0:36. 2 $\begingroup$ I don't think these ...Malaysia is a country with a rich and vibrant history. For those looking to invest in something special, the 1981 Proof Set is an excellent choice. This set contains coins from the era of Malaysia’s independence, making it a unique and valu...Step-by-step solution. Step 1 of 4. Rework Cantor’s proof from the beginning. This time, however, if the digit under consideration is 4, then make the corresponding digit of M an 8; and if the digit is not 4, make the corresponding digit of M a 4. Cantor Intersection Theorem | Sequences in metric space | Real analysis | math tutorials | Classes By Cheena Banga.Pdf link:https://omgmaths.com/real-analys... ….

Step-by-step solution. Step 1 of 4. Rework Cantor’s proof from the beginning. This time, however, if the digit under consideration is 4, then make the corresponding digit of M an 8; and if the digit is not 4, make the corresponding digit of M a 4.Proof of Cantor's Intersection Theorem. I am going through metric spaces by Michael Searcoid. The text proves the Cantor's Intersection theorem as shown in the image below. I understand the proof. However, just one thing, I am a little in doubt over is the use of specifying that F F is a nest of non-empty subsets of X X.5 Answers. Cantor's argument is roughly the following: Let s: N R s: N R be a sequence of real numbers. We show that it is not surjective, and hence that R R is not enumerable. Identify each real number s(n) s ( n) in the sequence with a decimal expansion s(n): N {0, …, 9} s ( n): N { 0, …, 9 }.This comes from the textbook: Edward A. Scheinerman - Mathematics: A Discrete Introduction-Cengage Learning (2012) I understand everything in the proof except for why Dr. Scheinerman defined the ...Cantor considers the reals in the interval [0,1] and using proof by contradiction, supposes they are countable. Since this set is infinite, there must be a one to one correspondence with the naturals, which implies the reals in [0,1] admit of an enumeration which we can write in the form x$_j$ = 0.a$_{j1}$ a$_{j2}$ a$_{j3}$...Uncountable set. In mathematics, an uncountable set (or uncountably infinite set) [1] is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than aleph-null, the cardinality of the natural numbers .A proof of the amazing result that the real numbers cannot be listed, and so there are 'uncountably infinite' real numbers.There are two proofs for Cantor's Proof. One is easier to understand than the other and it will be the first proof presented on this page. CANTOR'S DIAGONALIZATION METHOD. So we know from the page on Power sets that |P (S)| > |S| when S is a finite set with a cardinality of n. Now we are trying to show that |P (N)|>|N| for infinite sets as well ...This is similar but not identical to Cantor's diagonal proof, because it still relies on the digital representation of the number: First note that N can be put into one to one correspondence with Q, the rationals. Consider the factoradic representations of all members of Q. Note that all of these must necessarily terminate*. Cantors proof, First-time passport applicants, as well as minor children, must apply for passports in person. Therefore, you’ll need to find a passport office, provide proof of identity and citizenship and fill out an application. These guidelines are for..., Cantor's proof is a proof by contradiction: You ASSUME that there are as many real numbers as there are digits in a single real number, and then you show that that leads to a contradiction. You want a proof of something that Cantor proves was false. You know very well what digits and rows. The diagonal uses it for goodness' sake., GET 15% OFF EVERYTHING! THIS IS EPIC!https://teespring.com/stores/papaflammy?pr=PAPAFLAMMYHelp me create more free content! =)https://www.patreon.com/mathabl..., Sep 14, 2020. 8. Ancient Greek philosopher Pythagoras and his followers were the first practitioners of modern mathematics. They understood that mathematical facts weren't laws of nature but could be derived from existing knowledge by means of logical reasoning. But even good old Pythagoras lost it when Hippasus, one of his faithful followers ..., CANTOR'S proof, in this sense, is disappointing. Rather than offering a demon- stration that reveals the nature of trigonometric representations, and eventually the conditions for uniqueness, his proof relies instead upon carefully constructed subsequences of sequences defined over the real numbers., Proof of Cantor's Intersection Theorem. I am going through metric spaces by Michael Searcoid. The text proves the Cantor's Intersection theorem as shown in the image below. I understand the proof. However, just one thing, I am a little in doubt over is the use of specifying that F F is a nest of non-empty subsets of X X., May 28, 2023 · As was indicated before, Cantor’s work on infinite sets had a profound impact on mathematics in the beginning of the twentieth century. For example, in examining the proof of Cantor’s Theorem, the eminent logician Bertrand Russell devised his famous paradox in 1901. Before this time, a set was naively thought of as just a collection of objects. , An Attempted Proof of Cantor's Theorem. Ask Question Asked 10 years, 3 months ago. Modified 10 years, 3 months ago. Viewed 443 times 1 $\begingroup$ OK, I have read two different proofs of the following theorem both of which I can't quite wrap my mind around. So, I tried to write a proof that makes sense to me, and hopefully to others with the ..., People everywhere are preparing for the end of the world — just in case. Perhaps you’ve even thought about what you might do if an apocalypse were to come. Many people believe that the best way to survive is to get as far away from major ci..., Nowhere dense means that the closure has empty interior. Your proof is OK as long as you show that C C is closed. - Ayman Hourieh. Mar 29, 2014 at 14:50. Yes, I proved also that C C is closed. - avati91. Mar 29, 2014 at 14:51. 1. Your reasoning in correct., Cantor's Mathematics of the Infinite • Cantor answered this question in 1873. He did this by showing a one‐to‐one correspondence between the rational numbers and the integers. • Rational numbers are essentially pairs of integers -a numerator and a denominator. So he showed, Cantor’s lifelong dream seems to have been to return to Berlin as a professor, but it never happened. He rose through the ranks in Halle, becoming a full professor in 1879 and staying there until his death. See [13] for a short account of Cantor’s life. The standard account of Cantor’s mathematical work is [4]., Cantor's first premise is already wrong, namely that the "list" can contain all counting numbers, i.e., natural numbers. There is no complete set of natural numbers in mathematics, and there is a simple proof for that statement: Up to every natural number n the segment 1, 2, 3, ..., n is finite and is followed by potentially infinitely many ..., I asked my professor and she was unable to tell me why this same argument couldn't be used to prove that the rationals in [0,1] are also uncountable. It seems the argument would have to somehow show that the number you constructed using Cantor's method must be either a terminatingor repeating decimal, but I can't see how to prove this. Matt, Cantor's argument of course relies on a rigorous definition of "real number," and indeed a choice of ambient system of axioms. But this is true for every theorem - do you extend the same kind of skepticism to, say, the extreme value theorem? Note that the proof of the EVT is much, much harder than Cantor's arguments, and in fact isn't ..., There is an alternate characterization that will be useful to prove some properties of the Cantor set: \(\mathcal{C}\) consists precisely of the real numbers in \([0,1]\) whose base-3 expansions only contain the digits 0 and 2.. Base-3 expansions, also called ternary expansions, represent decimal numbers on using the digits \(0,1,2\)., A proof of the amazing result that the real numbers cannot be listed, and so there are 'uncountably infinite' real numbers., Cantor's diagonal proof basically says that if Player 2 wants to always win, they can easily do it by writing the opposite of what Player 1 wrote in the same position: Player 1: XOOXOX. OXOXXX. OOOXXX. OOXOXO. OOXXOO. OOXXXX. Player 2: OOXXXO. You can scale this 'game' as large as you want, but using Cantor's diagonal proof Player 2 will still ..., 3 thg 3, 2013 ... An important feature of the Cantor-Schroeder-Bernstein theorem is that it does not rely on the axiom of choice. However, its various proofs are ..., Cantor Set. The Cantor set is set of points lying on a line segment. It is created by taking some interval, for instance [0,1], [0,1], and removing the middle third \left (\frac {1} {3},\frac {2} {3}\right) (31, 32), then removing the middle third of each of the two remaining sections \left (\frac {1} {9},\frac {2} {9}\right) (91, 92) and \left ... , Nov 6, 2016 · Cantor's diagonal proof basically says that if Player 2 wants to always win, they can easily do it by writing the opposite of what Player 1 wrote in the same position: Player 1: XOOXOX. OXOXXX. OOOXXX. OOXOXO. OOXXOO. OOXXXX. Player 2: OOXXXO. You can scale this 'game' as large as you want, but using Cantor's diagonal proof Player 2 will still ... , For more information on this topic, see Cantor's first uncountability proof and Cantor's diagonal argument. Cardinal equalities. A variation of Cantor's diagonal argument can be used to prove Cantor's theorem, which states that the cardinality of any set is strictly less than that of its power set., Numbers which are the root of a polynomial with integer coefficients are called algebraic. Strangely, it is not so hard* to prove they exist, but very very hard to prove a number is transcendental. *comparatively speaking. For instance, the square root of 1.5 is NOT transcendental because it solves the equation 2x² -3 = 0., Topic covered:-Cantor's Theorem basic idea-Cantor's Theorem explained proof, Cantor's proof is not saying that there exists some flawed architecture for mapping $\mathbb N$ to $\mathbb R$. Your example of a mapping is precisely that - some flawed (not bijective) mapping from $\mathbb N$ to $\mathbb N$. What the proof is saying is that every architecture for mapping $\mathbb N$ to $\mathbb R$ is flawed, and it also …, 15-Jul-2021 ... But to Cantor's immense distress, he couldn't prove it. In 1900, the mathematician David Hilbert put the continuum hypothesis first on his ..., Joseph Liouville had proved the existence of such numbers in 1844; Cantor's proof was an independent verification of this discovery, without identifying any transcendental numbers in particular (the two best-known transcendental numbers are φ, established by Charles Hermite in 1873, and e, proven transcendental by Ferdinand von Lindemann in ..., Cantor’s first proof of this theorem, or, indeed, even his second! More than a decade and a half before the diagonalization argument appeared Cantor published a different proof of the uncountability of R. The result was given, almost as an aside, in a pa-per [1] whose most prominent result was the countability of the algebraic numbers. , Throughout history, babies haven’t exactly been known for their intelligence, and they can’t really communicate what’s going on in their minds. However, recent studies are demonstrating that babies learn and process things much faster than ..., But Cantor’s paper, in which he first put forward these results, was refused for publication in Crelle’s Journal by one of its referees, Kronecker, who henceforth vehemently opposed his work. On Dedekind’s intervention, however, it was published in 1874 as “Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen” (“On …, I asked my professor and she was unable to tell me why this same argument couldn't be used to prove that the rationals in [0,1] are also uncountable. It seems the argument would have to somehow show that the number you constructed using Cantor's method must be either a terminatingor repeating decimal, but I can't see how to prove this. Matt, So we give a geometric proof to Cantor's theorem using a generalization to Sondow's construc- tion. After, it is given an irrationality measure for some Cantor series, for that we generalize the Smarandache function. Also we give an irrationality measure for e that is a bit better than the given one in [2]. 2. Cantor's Theorem Definition 2.1., Cantor’s diagonalization argument, which establishes this fact, is probably my very favorite proof in mathematics. That same reasoning can be used to show that the Cantor set is uncountable—in ...