Charge of a quark

The down quark has electric charge −1/3 and the up quark has charge + 2/3, in units of the fundamental charge of the electron. Hence − 1 unit of charge is carried by the weak force in this interaction and this is referred to as a charged-current weak interaction.

Charge of a quark. Charge +1, 3 protons, mass number 6. Charge -2, 7 neutrons, mass number 17. 26 protons, 20 neutrons. 28 protons, mass number 62. 5 electrons, mass number 10. Charge -1, 18 electrons, mass number 36. 4. Arrange the following elements in order of increasing (a) number of protons; (b) number of neutrons; (c) mass.

We investigate a local SU(3)F flavour symmetry for its viability in generating the masses for the quarks and charged leptons of the first two families through radiative …

Aug 11, 2008 · The bottom quark is the second-heaviest known quark. It is a “down-type” quark, meaning that it has an electric charge that is negative and one-third that of the elementary charge of the electron (-1/3e). It is a Fermion, meaning it has half-integer internal spin angular momentum; in this case, like all other quarks, it is spin-1/2. Its mass is approximately equal to 4.1 GeV/ c². The electric charge of the bottom quark is – ⅓ e. Properties of Quarks. Electric Charge: It is strange to know that the electric charge of quarks is not an integer. The electric charge on the charm, up, and top quark equals + ⅔ e, while that on the strange, down, and bottom quark equals ...Charges of a subatomic particle are defined as fractions of the charge possessed by the elements formed by those particles. The charge of a subatomic particle is in units of e, or the charge of a proton, which is approximately Coulombs. So, protons have charge +1, and electrons, -1, using units of e. Protons are composed of two up quarks ( u ...The Weak Force. One of the four fundamental forces, the weak interaction involves the exchange of the intermediate vector bosons, the W and the Z.Since the mass of these particles is on the order of 80 GeV, the uncertainty principle dictates a range of about 10-18 meters which is about 0.1% of the diameter of a proton.. The weak interaction changes …Pions are of charge +1, -1, and 0 are denoted π + (+e charge), π-(-e charge), and π 0 (neutral charge), respectively. The π 0 (mass 135 MeV) is composed of either an up or anti up quark pair or a down/anti down quark pair the π + is an up/anti down pair, and the π-is a down/anti up pair (both have a mass of 140 MeV). All have zero spins.Baryon properties. These lists detail all known and predicted baryons in total angular momentum J = 1 / 2 and J = 3 / 2 configurations with positive parity.. Baryons composed of one type of quark (uuu, ddd, ...) can exist in J = 3 / 2 configuration, but J = 1 / 2 is forbidden by the Pauli exclusion principle.; Baryons composed of two types of quarks (uud, uus, ...) …It has an electric charge of − 1 3 e and a bare mass of 95+9 −3 MeV/ c2. [1] Like all quarks, the strange quark is an elementary fermion with spin 1 2, and experiences all four …

An up quark has electric charge + + 2 / 3 e, and a down quark has charge − + 1 / 3 e, so the summed electric charges of proton and neutron are +e and 0, respectively. Thus, the neutron has a charge of 0 (zero), and therefore is electrically neutral; indeed, the term "neutron" comes from the fact that a neutron is electrically neutral.Oct 11, 2021 · Jin will be presenting recent findings at the 2021 Fall Meeting of the American Physical Society’s Division of Nuclear Physics in October. “The topic describes how quarks ‘change flavors,’ or transition, due to weak interactions,” says Jin. “ The Standard Model describes four types of interactions and weak interactions are one of them. They carry a charge of negative 1.6 times 10 to power of negative 19 coulombs. In other words, the sign on their charge is opposite to that of a proton. But both a proton and an …meson, any member of a family of subatomic particles composed of a quark and an antiquark.Mesons are sensitive to the strong force, the fundamental interaction that binds the components of the nucleus by governing the behaviour of their constituent quarks. Predicted theoretically in 1935 by the Japanese physicist Yukawa Hideki, the existence of mesons …The sigma baryons are a family of subatomic hadron particles which have two quarks from the first flavour generation (up and / or down quarks), and a third quark from a higher flavour generation, in a combination where the wavefunction sign remains constant when any two quark flavours are swapped. They are thus baryons, with total isospin of 1, and can …If your phone, computer, or console won't charge, this could fix it. For a while now, our tech has run on rechargeable batteries, and that’s great‚ until we plug in a device and discover it won’t charge. Alternatives like wireless charging ...Other baryons are the lambda, sigma, xi, and omega particles. Baryons are distinct from mesons in that mesons are composed of only two quarks. Baryons and mesons are included in the overall class known as hadrons, the particles which interact by the strong force. Baryons are fermions, while the mesons are bosons.

It, along with the down quark, forms the neutrons (one up quark, two down quarks) and protons (two up quarks, one down quark) of atomic nuclei. It is part of the first generation …An up quark has electric charge + + 2 / 3 e, and a down quark has charge − + 1 / 3 e, so the summed electric charges of proton and neutron are +e and 0, respectively. Thus, the neutron has a charge of 0 (zero), and therefore is electrically neutral; indeed, the term "neutron" comes from the fact that a neutron is electrically neutral.In particle physics, a lepton is an elementary particle of half-integer spin (spin 1 ⁄ 2) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons or muons), and neutral leptons (better known as neutrinos).Charged leptons can combine with other particles to form various composite …Sep 5, 2022 · Its mass is approximately equal to 4.1 GeV/ c². The electric charge of the bottom quark is – ⅓ e. Properties of Quarks. Electric Charge: It is strange to know that the electric charge of quarks is not an integer. The electric charge on the charm, up, and top quark equals + ⅔ e, while that on the strange, down, and bottom quark equals ... The strange quark has strangeness, S = −1, the charm quark has charm, C = +1, and so on. Thus, three strange quarks together give a particle with an electric charge of − e and a strangeness of −3, just as is required for the omega-minus (Ω − ) particle; and the neutral strange particle known as the lambda (Λ) particle contains u d s ...Charge +1, 3 protons, mass number 6. Charge -2, 7 neutrons, mass number 17. 26 protons, 20 neutrons. 28 protons, mass number 62. 5 electrons, mass number 10. Charge -1, 18 electrons, mass number 36. 4. Arrange the following elements in order of increasing (a) number of protons; (b) number of neutrons; (c) mass.

Encouraging scripture gifs.

Quantum numbers, like strangeness, charge and spin, have to be conserved. ... Although the quark–gluon plasma only existed 13.8 billion years ago in the immediate aftermath of the Big Bang, ...A photon (from Ancient Greek φῶς, φωτός (phôs, phōtós) 'light') is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force.Photons are massless, so they always move at the speed of light in vacuum, 299 792 458 m/s (or …Particle Symbol Type Charge [ e] Electron e lepton 1 Neutrino e lepton 0 Up quark u quark + 2 3 Down quark d quark 1 3 The proton and neutron are simply the lowest energy bound states of a system of three quarks: essentially all an atomic or nuclear physicist needs. Proton (p) Neutron (n) Prof. Tina Potter 1. Introduction 7 Matter Three generationsFlavor means that distinct species of elementary particles may be distinguished within more general types; the Standard Model of Particle Physics describes six flavors of quarks and six flavors of leptons. Since there are three quark species which equally carry electro-magnetic charge +2/3 as well as three quark species of charge -1/3 therefore ...The electric charge is a quark of +2/3 e. The Top Quark. The Top quark is denoted by t and its antiparticle is denoted by t. The mass of the top quark is 172.9 – 1.5 GeV/c 2. Its electric charge is +2/3. The Bottom Quark. The bottom quark is symbolized by b and its antiparticle is denoted by b. The mass of the bottom quark is approximately 4. ... An up quark (electric charge +2/3) interacts with anup antiquark (charge –2/3). 2. They form a virtual photon, which has no charge but does have a mass. (A photon with mass is a violation of the ...

For all the quark flavour quantum numbers listed below, the convention is that the flavour charge and the electric charge of a quark have the same sign. Thus any flavour carried by a charged meson has the same sign as its charge. Quarks have the following flavour quantum numbers:Along with the charm quark, it is part of the second generation of matter. It has an electric charge of − + 1 / 3 e and a bare mass of 95 +9 −3 MeV/c 2. Like all quarks, the strange quark is an elementary fermion with spin 1 / 2, and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong ...Quark definition, any of the hypothetical particles with spin 1/2, baryon number 1/3, and electric charge 1/3 or −2/3 that, together with their antiparticles, are believed to constitute all the elementary particles classed as baryons and mesons; they are distinguished by their flavors, designated as up (u), down (d), strange (s), charm (c), bottom or beauty (b), and …Like protons and electrons, quarks contain an electric charge. However, unlike protons and electrons, these are fractional charges. Quarks either have a charge of − 1 3 e or + 2 3 e, where e is the elementary charge: the electrical charge carried by a single proton. The table below shows the electrical charge for each flavor of quark.As electric vehicles become more popular, the need for charging stations is increasing. If you are an EV owner, you know the importance of finding charging stations near your location. In this article, we will discuss how to find the best c...The Standard Model predicted 6 types of quarks: up, down, top, bottom, charm, and strange. They are differentiated based on properties such as mass and charge. The last to be experimentally confirmed was the heaviest, the top quark. Having confirmed the existence of each type of quark, attention turned to combinations of quarks.According to theory, the top quark carries a charge of 2 / 3 e; its partner, the bottom quark, has a charge of − 1 / 3 e. In 1995 two independent groups of scientists at …The down quark has electric charge −1/3 and the up quark has charge + 2/3, in units of the fundamental charge of the electron. Hence − 1 unit of charge is carried by the weak force in this interaction and this is referred to as a charged-current weak interaction.

bosons can decay to a lepton and antilepton (one of them charged and another neutral) or to a quark and antiquark of complementary types (with opposite electric charges ± + 1 / 3 and ∓ + 2 / 3). The decay width of the W boson to a quark–antiquark pair is proportional to the corresponding squared CKM matrix element and the number of quark ...

Each quark contains a net color charge of one color; each antiquark has an anticolor assigned to it. The only other Standard Model particle with a color is the gluon: quarks exchange gluons, and ...Define quark. quark synonyms, quark pronunciation, quark translation, English dictionary definition of quark. n. 1. Any of a class of six fundamental fermions, two in each of the three generations, one having an electric charge of - 1/3 , the other, + 2/3 ,... Quark - definition of quark by The Free Dictionary.Physicists initially supposed that — in a calculation echoing the simple charge arithmetic — the half-units of the two up quarks minus that of the down quark must equal half a unit for the proton as a whole. But in 1988, the European Muon Collaboration reported that the quark spins add up to far less than one-half. Similarly, the masses of ...Pions are of charge +1, -1, and 0 are denoted π + (+e charge), π-(-e charge), and π 0 (neutral charge), respectively. The π 0 (mass 135 MeV) is composed of either an up or anti up quark pair or a down/anti down quark pair the π + is an up/anti down pair, and the π-is a down/anti up pair (both have a mass of 140 MeV). All have zero spins.The charm quark, charmed quark, or c quark is an elementary particle of the second generation. It is the third-most-massive quark with a mass of 1.27 ± 0.02 GeV/ c2 as measured in 2022 and a charge of + 2 3 e. It carries charm, a quantum number. Charm quarks are found in hadrons such as the J/psi meson and the charmed baryons. Dear Lifehacker, After years of working as a corporate slave, I've decided to make the jump and strike out on my own as a freelancer. I already have some people interested in my work, but I'm not really sure how much to charge. Do I set my ...It will determine whether the universe is in a high or low energy state. If the mass of the top quark is found to be heavier than expected, meaning the universe has high energy, the energy carried through space could collapse in as little as 10 billion years. However, if its mass is lower than expected, than due to something known as Boltzmann ...The Xi-minus particle is a baryon, it is made up of three quarks. It must contain two strange quarks to have S = -2. This yields a charge of -(2/3)e. We must add another quark with S = 0 and charge -(1/3)e. Since the b-quark is excluded, we must add a d-quark. The quark combination for the Xi-minus is dss. Link: The structure of matterWe investigate a local SU(3)F flavour symmetry for its viability in generating the masses for the quarks and charged leptons of the first two families through radiative …

Graduate certificate in community development.

Blue iris reolink.

According to the quark model, the properties of hadrons are primarily determined by their so-called valence quarks. For example, a proton is composed of two up quarks (each with electric charge + + 2 ⁄ 3, for a total of + 4 ⁄ 3 together) and one down quark (with electric charge − + 1 ⁄ 3). Adding these together yields the proton charge ...Just like it’s awkward to talk about the lifetime of a strange quark, it’s also awkward to talk about it’s electric charge. Quarks always show up in groups - and its their collective, electric charge that matters - but for the bean counters out there, the strange quark has an electric charge of minus 1/3. Just like the down quark.while Zweig referred to them as aces.Their respective charges are \(3/2, -1/3, -1/3\) in units of the proton charge and with strangeness \(S=\) 0, 0, \(-1\).The entire SU(3) family of particles may be constructed out of these three quarks and the corresponding model is called the quark model.Of course other quarks have been discovered as the …In addition to electric charges — up quarks have a charge of +⅔e and down quarks have -⅓e, with the antiquarks having the opposite charge, and where e is the magnitude of the electron’s ...1* The neutral Kaons K 0 s and K 0 L represent symmetric and antisymmetric mixtures of the quark combinations down-antistrange and antidown-strange.. The charged kaons are mesons which have a quark composition of up-antistrange for the positive kaon and antiup-strange for the negative kaon. They decay in about 10-8 seconds by the processes:. …QUARK CHARGES. A quark is an energetic particle that moves quickly. Quarks come in a number of different types. Up quarks and down quarks make up protons and neutrons, respectively. 2/3 is the charge of each up quark. A -1/3 charge is assigned to each down quark.Electric cars are becoming increasingly popular as more people look for ways to reduce their carbon footprint and save money on fuel costs. The cost of charging your electric car at home will depend on the type of charger you use.Besides the quark confinement idea, there is a potential possibility that the color charge of quarks gets fully screened by the gluonic color surrounding the quark. Exact solutions of SU(3) classical Yang–Mills theory which provide full screening (by gluon fields) of the color charge of a quark have been found. [13]Gluons. Gluons are the exchange particles for the color force between quarks, analogous to the exchange of photons in the electromagnetic force between two charged particles. The gluon is considered to be a massless vector boson with spin 1. The gluon can be considered to be the fundamental exchange particle underlying the strong interaction between …Quarks “The first principles of the universe are atoms and empty space. Everything else is merely thought to exist…” “… Further, the atoms are unlimited in size and number, and they are borne along with the whole universe in a vortex, and thereby generate all composite things—fire, water, air, earth. ….

Gell-Mann and by Zweig separately.3–5 The quark model as a hadron scheme has been established since then and is a core part of the Standard Model. 1,6 A baryon consists of three quarks.Antiquarks are the antiparticles of the quark, which have the opposite charge and baryon number. Antiquarks have the same mass and energy at rest as quarks.The six varieties, or “flavours,” of quark have acquired the names up, down, charm, strange, top, and bottom. The meaning of these somewhat unusual names is not important; they …The strong force acts between color charges of quarks and does not affect particles without color charges, called colorless particles. Color charges can be broken into three basic groups: red minus green (R - G), green minus blue (G - B), and blue minus red (B - R). Each quark can have a value of -1/2, 0, or +1/2 for each of the three charges.Each quark contains a net color charge of one color; each antiquark has an anticolor assigned to it. The only other Standard Model particle with a color is the gluon: quarks exchange gluons, and ...The neutron has a quark composition of udd, and its charge quantum number is therefore: q(udd) = 2/3 + (-1/3) + (-1/3) = 0. Since the neutron has no net electric charge, it is not affected by electric forces, but the neutron does have a slight distribution of electric charge within it. This is caused by by its internal quark structure. Mesons are formed by two quarks—a quark-antiquark pair. Sample mesons, including quark content and properties, are given in Table 11.4.3 11.4. 3. Consider the formation of the pion ( π+ = ud¯¯¯ π + = u d ¯ ). Based on its quark content, the charge of the pion is. 2 3e + 1 3e = e. 2 3 e + 1 3 e = e.They carry a charge of negative 1.6 times 10 to power of negative 19 coulombs. In other words, the sign on their charge is opposite to that of a proton. But both a proton and an …Hadron is defined as the subatomic particle made of quarks, gluons and anti-quarks. Hadrons are the heaviest particles. It is composed of two or more quarks that are held strongly by the electromagnetic force. Every individual quark has functional electric charges, these combine such that hadrons carry a net integer electric charge. Charge of a quark, Frequently Asked Questions – FAQs What is Quark? Quark is a fundamental constituent of matter and is defined as an elementary particle. These quarks combine to produce composite particles called hadrons, …, Baryons are made of three quarks (thus have a baryon number of 1) for example the proton (uud; charge=+1 ) and neutron (udd, charge=0), whereas mesons are made of a quark-antiquark pair (thus have ..., A photon (from Ancient Greek φῶς, φωτός (phôs, phōtós) 'light') is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force.Photons are massless, so they always move at the speed of light in vacuum, 299 792 458 m/s (or …, Up, charm and top quarks have a charge of + 2 ⁄ 3, while down, strange and bottom quarks have a charge of - 1 ⁄ 3. Each quark has a matching antiquark. Antiquarks have a charge opposite to that of their quarks; meaning that up, charm and top antiquarks have a charge of - 2 ⁄ 3 and down, strange and bottom antiquarks have a charge of + 1 ..., Feb 20, 2022 · Leptons, quarks, and carrier particles may be all there is. In this module we will discuss the quark substructure of hadrons and its relationship to forces as well as indicate some remaining questions and problems. Figure 33.5.1: All baryons, such as the proton and neutron shown here, are composed of three quarks. , Quarks Table provided on the datasheet. The charge of a hadron is determined by the sum of the charges of its quarks. For example, a proton is made up of two up quarks and a down quark. Adding up their charges gives the charge of a proton: Equivalently, the baryon number and strangeness of a hadron is determined by the sum of the baryon numbers ... , For a strange quark, with electric charge − + 1 / 3, a baryon number of + + 1 / 3, and strangeness −1, we get a hypercharge Y = − + 2 / 3, so we deduce that I 3 = 0 . That means that a strange quark makes an isospin singlet of its own (the same happens with charm, bottom and top quarks), while up and down constitute an isospin doublet., The unit of mass of quark is measured in terms of \(\frac{MeV}{c^{2}}\), where MeV is the energy of quark in terms of mega-electron volts and c is the velocity of light in vacuum. Colour Charge: According to the quantum chromodynamics (QCD), there are three types of quark’s colours in nature. These colours are red, blue and green., Quarks and gluons are the building blocks of protons and neutrons, which in turn are the building blocks of atomic nuclei. Scientists’ current understanding is that quarks and gluons are indivisible—they cannot be …, Well, the charge on a charm quark is positive two-thirds times the charge of an electron. This confirms to us that a charm quark, like any quark, can be made by adding some number of electrons and protons together. If we do that, we’ll just come out with an integer value. But this clearly has a fractional value of charge., Quark, any member of a group of elementary subatomic particles that are believed to be among the fundamental constituents of matter., In quark: Quark flavours. The up quark (charge 2 / 3 e) and down quark (charge − 1 / 3 e) make up protons and neutrons and are thus the ones observed in ordinary matter. Strange quarks (charge − 1 / 3 e) occur as components of K mesons and various. Read More; subatomic particles , the determination of quark and gluon jet fractions. This paper presents the rst jet charge measurements in heavy ion collisions along with pp jet charge results at the same center-of-mass energy per nucleon pair (p s NN). The analysis uses PbPb and pp data at p s NN = 5:02TeV, both collected in 2015 with the CMS detector at the CERN LHC., meson, any member of a family of subatomic particles composed of a quark and an antiquark.Mesons are sensitive to the strong force, the fundamental interaction that binds the components of the nucleus by governing the behaviour of their constituent quarks. Predicted theoretically in 1935 by the Japanese physicist Yukawa Hideki, the existence of mesons …, Charges of a subatomic particle are defined as fractions of the charge possessed by the elements formed by those particles. The charge of a subatomic particle is in units of e, or the charge of a proton, which is approximately Coulombs. So, protons have charge +1, and electrons, -1, using units of e. Protons are composed of two up quarks ( u ..., The neutron, having two down quarks and an up, has a total electric charge of zero. Unlike the heavy nucleons, these quarks are rather light, with far smaller masses than even the electron. The mass of the up quark is somewhere around 2 MeV, and the mass of the down quark is closer to 5 MeV. This presents a mystery, as the mass of the three ..., The neutron has no electric charge and a rest mass equal to 1.67493E−27 kg — marginally greater than that of the proton but nearly 1839 times greater than that of the electron. ... The neutron is a composite particle made of two down quarks with charge −⅓ e and one up quark with charge +⅔ e. Since the neutron has no net electric ..., In the quark model for hadrons, the neutron is composed of one up quark (charge +2/3 e) and two down quarks (charge −1/3 e). The magnetic moment of the neutron can be modeled as a sum of the magnetic moments of the constituent quarks. [58], The charge of a subatomic particle is in units of e, or the charge of a proton, which is approximately Coulombs. So, protons have charge +1, and electrons, -1, using units of e . Protons are composed of two up quarks ( u ) and one down quark ( d ), so the total charge is +1. , charge. Precision measurements of the properties of known particles have led to tight limits on the values of magnetic charge they may possess. Using the induction method (see below), the electron’s magnetic charge has been found to be Qm e <10−24QD M [24] (where QD is the Dirac charge). Furthermore ..., QUARK CHARGES. A quark is an energetic particle that moves quickly. Quarks come in a number of different types. Up quarks and down quarks make up protons and neutrons, respectively. 2/3 is the charge of each up quark. A -1/3 charge is assigned to each down quark., "Every baryon is made up of three quarks, and every meson is made of a quark and an antiquark," where an antiquark is the antimatter counterpart of a quark having the opposite electric charge ..., 3 Jun 2022 ... Each quark has a spin of 1/2 and a fractional electric charge, both of which are its intrinsic properties. The up, top, and charm quarks are ..., There are two types of hadrons: baryons and mesons. Every baryon is made up of three quarks and every meson is made of a quark and an antiquark. For example, the proton is composed of two up quarks and a down quark (uud). All quarks have the same quantum numbers for such properties as spin, size, parity, etc. , 18 Des 2013 ... As gluons carry no intrinsic quantum numbers beyond color charge, and because color is believed to be permanently confined, most of the quantum ..., These are the up quark, which possesses two-thirds of a unit of electric charge, and the down quark, with an electric charge of −1/3. Up and down quarks can be either “left-handed” or “right-handed” depending on whether they are spinning clockwise or counterclockwise with respect to their direction of motion., In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons.Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion.QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3).The QCD analog …, Aug 11, 2008 · The bottom quark is the second-heaviest known quark. It is a “down-type” quark, meaning that it has an electric charge that is negative and one-third that of the elementary charge of the electron (-1/3e). It is a Fermion, meaning it has half-integer internal spin angular momentum; in this case, like all other quarks, it is spin-1/2. , Quark and Gluon Facts. There are six different kinds of quarks with a wide range of masses. They are named up, down, charm, strange, top, and bottom. Quarks are the only elementary particles to experience all the known forces of nature and to have a fractional electric charge. , Color charge is the 3-valued hidden quantum number carried by quarks, antiquarks and gluons. Color charge has a 3 valuedness that we associate with the group SU(3)color . Color charge is hidden in the sense that only singlets of SU(3)color that are neutral occur in nature (at least macroscopically and at low temperatures)., quark: [noun] any of several elementary particles that are postulated to come in pairs (as in the up and down varieties) of similar mass with one member having a charge of +²/₃ and the other a charge of −¹/₃ and are held to make up hadrons., Color charge is the 3-valued hidden quantum number carried by quarks, antiquarks and gluons. Color charge has a 3 valuedness that we associate with the group SU(3)color . Color charge is hidden in the sense that only singlets of SU(3)color that are neutral occur in nature (at least macroscopically and at low temperatures)., Anti-up quark has a charge of -2/3 and down quark has a charge of -1/3, so the charge of the negative pion is -1e (1). If two colliding protons each have the same amount of energy, calculate the minimum kinetic energy, in MeV, each must have for the reaction of p + p -> p + p + (p) + p to occur, where (p) = an antiproton (3 marks).